Malicious Ai Models On Hugging Face Backdoor Users Machines

AI

At least 100 instances of malicious AI ML models were found on the Hugging Face platform, some of which can execute code on the victim’s machine, giving attackers a persistent backdoor.

Hugging Face is a tech firm engaged in artificial intelligence (AI), natural language processing (NLP), and machine learning (ML), providing a platform where communities can collaborate and share models, datasets, and complete applications.

JFrog’s security team found that roughly a hundred models hosted on the platform feature malicious functionality, posing a significant risk of  data breaches and espionage attacks.

This happens despite Hugging Face’s security measures, including malware, pickle, and secrets scanning, and scrutinizing the models’ functionality to discover behaviors like unsafe deserialization.

Achieving code execution via an AI model
Achieving code execution via an AI model (JFrog)

Malicious AI ML models

JFrog developed and deployed an advanced scanning system to examine PyTorch and Tensorflow Keras models hosted on Hugging Face, finding one hundred with some form of malicious functionality.

“It’s crucial to emphasize that when we refer to “malicious models,” we specifically denote those housing real, harmful payloads,” reads the JFrog report.

“This count excludes false positives, ensuring a genuine representation of the distribution of efforts towards producing malicious models for PyTorch and Tensorflow on Hugging Face.”

Payload types found in malicious models
Payload types found in malicious models (JFrog)

One highlighted case of a PyTorch model that was uploaded recently by a user named “baller423,” and which has since been removed from HuggingFace, contained a payload that gave it the capability to establish a reverse shell to a specified host (210.117.212.93).

The malicious payload used Python’s pickle module’s “__reduce__” method to execute arbitrary code upon loading a PyTorch model file, evading detection by embedding the malicious code within the trusted serialization process.

Payload that establishes a reverse shell
Payload that establishes a reverse shell (JFrog)

JFrog found the same payload connecting to other IP addresses in separate instances, with the evidence suggesting the possibility of its operators being AI researchers rather than hackers. However, their experimentation was still risky and inappropriate.

The analysts deployed a HoneyPot to attract and analyze the activity to determine the operators’ real intentions but were unable to capture any commands during the period of the established connectivity (one day).

Setting up honeypot to entrap the attacker
Setting up honeypot to entrap the attacker (JFrog)

JFrog says some of the malicious uploads could be part of security research aimed at bypassing security measures on Hugging Face and collecting bug bounties, but since the dangerous models become publicly available, the risk is real and shouldn’t be underestimated.

AI ML models can pose significant security risks, and those haven’t been appreciated or discussed with proper diligence by stakeholders and technology developers.

JFrog’s findings highlight this problem and call for elevated vigilance and proactive measures to safeguard the ecosystem from malicious actors.


Original Source


A considerable amount of time and effort goes into maintaining this website, creating backend automation and creating new features and content for you to make actionable intelligence decisions. Everyone that supports the site helps enable new functionality.

If you like the site, please support us on “Patreon” or “Buy Me A Coffee” using the buttons below

To keep up to date follow us on the below channels.